Measuring the Adequacy of Cross-Lingual Paraphrases in a Machine Translation Setting

نویسنده

  • Marianna Apidianaki
چکیده

Following the growing trend in the semantics community towards models adapted to specific applications, the SemEval-2 Cross-Lingual Lexical Substitution and Word Sense Disambiguation tasks address the disambiguation needs of Machine Translation (MT). The experiments conducted in this study aim at assessing whether the proposed evaluation protocol and methodology provide a fair estimate of the adequacy of cross-lingual predictions in translations. For this purpose, the gold SemEval paraphrases are fed into a state-of-the-art MT system and the obtained translations are compared to paraphrase quality judgments based on the source context. The results show the strong dependence of cross-lingual paraphrase adequacy on the translation context and cast doubt on the contribution that systems performing well in existing evaluation schemes would have on MT. These empirical findings highlight the importance of complementing the current evaluation schemes with translation information to allow a more accurate estimation of the systems impact on end-to-end applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Monolingual Compositional Representations via Bilingual Supervision

Bilingual models that capture the semantics of sentences are typically only evaluated on cross-lingual transfer tasks such as cross-lingual document categorization or machine translation. In this work, we evaluate the quality of the monolingual representations learned with a variant of the bilingual compositional model of Hermann and Blunsom (2014), when viewing translations in a second languag...

متن کامل

BiMEANT: Integrating Cross-Lingual and Monolingual Semantic Frame Similarities in the MEANT Semantic MT Evaluation Metric

We present experimental results showing that integrating cross-lingual semantic frame similarity into the semantic frame based automatic MT evaluation metric MEANT improves its correlation with human judgment on evaluating translation adequacy. Recent work shows that MEANT more accurately reflects translation adequacy than other automatic MT evaluation metrics such as BLEU or TER, and that more...

متن کامل

English-Persian Plagiarism Detection based on a Semantic Approach

Plagiarism which is defined as “the wrongful appropriation of other writers’ or authors’ works and ideas without citing or informing them” poses a major challenge to knowledge spread publication. Plagiarism has been placed in four categories of direct, paraphrasing (rewriting), translation, and combinatory. This paper addresses translational plagiarism which is sometimes referred to as cross-li...

متن کامل

Can Automatic Post-Editing Make MT More Meaningful?

Automatic post-editors (APEs) enable the re-use of black box machine translation (MT) systems for a variety of tasks where different aspects of translation are important. In this paper, we describe APEs that target adequacy errors, a critical problem for tasks such as cross-lingual question-answering, and compare different approaches for post-editing: a rule-based system and a feedback approach...

متن کامل

Cross-Lingual Sentiment Analysis Without (Good) Translation

Current approaches to cross-lingual sentiment analysis try to leverage the wealth of labeled English data using bilingual lexicons, bilingual vector space embeddings, or machine translation systems. Here we show that it is possible to use a single linear transformation, with as few as 2000 word pairs, to capture fine-grained sentiment relationships between words in a cross-lingual setting. We a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012